Publication Date : 2015-02-01
Author : Tingay, M.
Countries : Indonesia
Disaster Management Theme :
Disaster Type : Volcano
Document Type : Research Paper
Languange : en
Link : http://library.seg.org/doi/abs/10.1190/INT-2014-0092.1
Abstact :
The Lusi mud volcano of East Java, Indonesia, remains one of the most unusual geologic disasters of modern times. Since its sudden birth in 2006, Lusi has erupted continuously, expelling more than 90 million cubic meters of mud that has displaced approximately 40,000 people. This study undertakes the first detailed analysis of the pore pressures immediately prior to the Lusi mud volcano eruption by compiling data from the adjacent (150 m away) Banjar Panji-1 wellbore and undertaking pore pressure prediction from carefully compiled petrophysical data. Wellbore fluid influxes indicate that sequences under Lusi are overpressured from only 350 m depth and follow an approximately lithostat-parallel pore pressure increase through Pleistocene clastic sequences (to 1870 m depth) with pore pressure gradients up to 17.2??MPa/km17.2??MPa/km. Most unusually, fluid influxes, a major kick, connection gases, elevated background gases, and offset well data confirm that high-magnitude overpressures also exist in the Plio-Pleistocene volcanic sequences (1870 to approximately 2833 m depth) and Miocene (Tuban Formation) carbonates, with pore pressure gradients of 17.2–18.4??MPa/km17.2–18.4??MPa/km.