Assessing the performance of regional landslide early warning models: the EDuMaP method

Publication Date : 2016-01-18
Author : Calvello, M.Piciullo, L.
Countries :
Disaster Management Theme :
Disaster Type : Landslide
Document Type : Research Paper
Languange : en
Link :

Abstact :

A schematic of the components of regional early warning systems for rainfall-induced landslides is herein proposed, based on a clear distinction between warning models and warning systems. According to this framework an early warning system comprises a warning model as well as a monitoring and warning strategy, a communication strategy and an emergency plan. The paper proposes the evaluation of regional landslide warning models by means of an original approach, called the event, duration matrix, performance (EDuMaP) method, comprising three successive steps: identification and analysis of the events, i.e., landslide events and warning events derived from available landslides and warnings databases; definition and computation of a duration matrix, whose elements report the time associated with the occurrence of landslide events in relation to the occurrence of warning events, in their respective classes; evaluation of the early warning model performance by means of performance criteria and indicators applied to the duration matrix. During the first step the analyst identifies and classifies the landslide and warning events, according to their spatial and temporal characteristics, by means of a number of model parameters. In the second step, the analyst computes a time-based duration matrix with a number of rows and columns equal to the number of classes defined for the warning and landslide events, respectively. In the third step, the analyst computes a series of model performance indicators derived from a set of performance criteria, which need to be defined by considering, once again, the features of the warning model. The applicability, potentialities and limitations of the EDuMaP method are tested and discussed using real landslides and warning data from the municipal early warning system operating in Rio de Janeiro (Brazil).